+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Применения теории хаоса

Теория хаоса

Применения теории хаоса

Можно ли прогнозировать хаотическое движение элементов какой-либо системы? От чего зависит хаотическая динамика? Может ли, наконец, взмах крыла бабочки вызвать торнадо? Некоторые важные ответы на эти и другие вопросы нашел американский метеоролог Эдвард Лоренц, (невольный) автор термина «эффект бабочки» и создатель «странного аттрактора». Рассказываем об этом в первом материале, посвященном самым интересным дифференциальным уравнениям.

В 1972 году профессор метеорологии из Массачусетского технологического института Эдвард Лоренц собирался выступить на конференции, но в пылу работы не успел отправить тему своей лекции.

Организатор, спешивший разослать приглашения, выбрал заголовок за него: «Предсказуемость: может ли взмах крыла бабочки в Бразилии вызвать торнадо в Техасе?» Так и появился термин «эффект бабочки», известный сегодня всему миру.

Эдвард Лоренц родился в 1917 году в небольшом городке в штате Коннектикут. Изучать атмосферные явления он решил еще в детстве, испытав потрясение от того, с какой легкостью солнечная погода может смениться бурей с громом и молниями.

Путь к исполнению мечты вышел долгим: магистратура в Гарварде, работа метеорологом в авиационном подразделении Армии США, защита диссертации в послевоенный период, наконец, должность научного сотрудника и, позже, профессора в MIT.

В своем выступлении Лоренц выделил несколько ключевых идей:

⦁ Если взмах крыла бабочки может вызвать торнадо, то точно так же на это способны все предыдущие и будущие взмахи, равно как и взмахи остальных миллионов бабочек, не говоря уже об активности бесчисленного населения нашей планеты.

⦁ Если взмах крыла бабочки способен вызывать торнадо, то в равной степени этот же взмах может его предотвратить.

Взмах крыла бабочки в данном контексте должен восприниматься как маленькое изменение начальных условий исследуемой системы, способное как вызвать торнадо, так и изменить его траекторию или вообще стать причиной его затухания.

В отличие от эффекта домино, где конкретное (обычно незначительное) действие приводит к конкретному (обычно значительному) результату, причем происходит это однозначно, взмах бабочки может не иметь никакого влияния на поведение торнадо.

Система Лоренца

Лоренц изучал конвекцию (теплообмен, возникающий за счет движения молекул жидкости или газа) в атмосфере Земли. Для описания подобных физических процессов часто пользуются моделью, которая включает в себя уравнения Навье-Стокса, описывающие движение вязкой ньютоновской жидкости (за исключением некоторых частных случаев, их решения в общем виде на данный момент неизвестны):

⦁ Уравнение движения в векторном виде:

⦁ Уравнение теплопроводности, описывающее распределение температуры в пространстве с течением времени:

⦁ Уравнение непрерывности, которое, по своей сути, описывает принцип сохранения массы чего-либо:

В оригинале эти три составляющие дают следующую систему:

Мы не будем углубляться в детальное объяснение всего вышеизложенного. Достаточно лишь понимать, что это довольно сложная модель, и Лоренцу в результате многостраничных выкладок удалось построить ее упрощение:

Здесь переменная с точкой сверху означает ее производную по времени. Более подробно:

  • x отвечает за интенсивность конвекции;
  • y отображает разность между температурами входящих и нисходящих потоков;
  • z характеризует отклонение вертикального температурного профиля от линейной зависимости;
  • σ > 1 — число Прандтля (критерий подобия тепловых процессов в жидкостях и газах);
  • ρ > 0 — число Рэлея (отображает поведение жидкости под воздействием градиента температуры);
  • β > 0 — число, отражающее геометрию конвективной ячейки.

С помощью этой системы уравнений можно рассчитать, как будет вести себя текучая среда, которую равномерно разогревают снизу и охлаждают сверху. Так, как это происходит с воздушными потоками в атмосфере. В частности, она позволяет понять, к какому результату приведет даже небольшое изменение исходных параметров.

Хаотическое движение

Перед тем как приступить к непосредственному анализу полученной системы, рассмотрим некоторые комбинации траекторий. Для наглядности, воспользуемся теми же значениями параметров, что и сам Лоренц: σ = 10, ρ = 28, β = 8/3.

Изобразим движение двух точек, расстояние между которыми изначально невелико:

⦁ P0 = (0, 1, 1)
⦁ P1 = (0, 1, 1,01)

Довольно интересный результат! Поначалу траектории почти неразличимы, потом они отклоняются совсем ненамного, после чего разница становится уже значительной.

Попробуем еще раз, однако теперь возьмем точки на значительном отдалении друг от друга:

⦁ P0 = (−25, 20, −15)
⦁ P1 = (−15, 40, 15)

Даже несмотря на подобную разницу начальных условий, траектории попадают на фигуру, которую впоследствии не покидают. Очень странно, их будто что-то притягивает…

Странный аттрактор Лоренца

Действительно, эта фигура так и называется — странный аттрактор Лоренца (от английского attract — «притягивать»).

Формальное математическое определение звучит так: аттрактор — такое подмножество фазового пространства, что все траектории, стартующие не слишком далеко от него, стремятся к нему с течением времени. (Это одно из возможных определений понятия аттрактора, существуют и другие, не эквивалентные данному.)

Слово же «странный» здесь выступает в таком ключе: аттрактор как множество не представим в виде кривой или поверхности, он имеет более сложную, фрактальную структуру. Траектории аттрактора не замыкаются, а малые отклонения постоянно накапливаются, причем экспоненциально.

Сказанное выше можно проиллюстрировать так: две траектории, выпущенные из близких точек, со временем разбегаются достаточно далеко. Причем, чтобы отдалить момент разбегания, например, на одну секунду, нужно уменьшить расстояние между начальными точками, скажем, вдвое. А чтобы на две секунды — вчетверо. А на три — в восемь раз, и так далее.

Это означает, что, даже используя мощный компьютер, мы не можем просчитать траекторию, проходящую вблизи аттрактора, с разумной точностью на протяжении длительного промежутка времени.

На каждом шаге вычислений неизбежно вносятся ошибки (из-за округления чисел и погрешностей численных методов), которые быстро накапливаются и приводят к тому, что найденная траектория сильно отличается от настоящей.

Такое искажение невозможно исправить, просто увеличивая мощность компьютера. Подобное явление называется «динамическим хаосом».

Ниже представлена модель странного аттрактора, с которой можно поэкспериментировать, меняя входящие значения. Для желающих более подробно изучить математическую сторону припасен еще один раздел сразу после модели.

Вы можете покрутить модель или увеличить/уменьшить ее масштаб (с помощью кнопок мыши на десктопе или пальцами на экране смартфона). Значение бегунков сверху вниз:

  • значение параметра σ;
  • значение параметра ρ;
  • значение параметра β;
  • плотность траекторий.

Оранжевые сферы — точки, движущиеся согласно системе Лоренца. Соответственно, синие линии — траектории этих точек.

Немного математики

Система Лоренца обладает несколькими замечательными свойствами:

⦁ Правая часть системы не имеет свободных членов, то есть она однородна.

⦁ Если тройка (x, y, z) является решением, то и (-x, -y, z) также подходит — система обладает симметрией.

⦁ Все траектории системы ограничены некоторым предельным множеством в силу отрицательности дивергенции векторного поля:

Иными словами, поток сжимает объем фазового пространства — это называется диссипативной системой.

Система Лоренца обладает точками равновесия, причем одна из них очевидна — E0 = (0, 0, 0). Попробуем найти другие:

В предположении, что x ≠ 0 (иначе решением будет (0, 0, 0)) и ρ ≥ 1, получим:

Таким образом, мы получили еще две точки равновесия при x ≠ 0, ρ ≥ 1:

Исследуем эти точки на устойчивость при помощи якобиана:

Начнем с точки E0 = (0, 0, 0):

Подкоренное выражение больше нуля, поэтому все собственные значения являются вещественными.

  • при ρ  1 существует положительный корень — неустойчивое седло.

Для оставшихся двух точек мы не будем подробно углубляться в выкладки, чтобы сохранить простоту восприятия.

Оказывается, что они либо одновременно устойчивы, либо одновременно неустойчивы. Асимптотическая устойчивость имеет место при справедливости одного из следующих условий:

Хаос по определению

Детерминизм зачастую приравнивался к предсказуемости, но Лоренцу удалось показать, что детерминизм способен дать лишь краткосрочное предсказание поведения системы, тогда как в долгосрочной перспективе последствия могут быть непредсказуемы. Именно это и означает термин «хаос».

Однако не стоит путать хаос с хаотичностью — аттрактор Лоренца яркий тому пример, ведь все траектории так или иначе ограничены и не покидают определенное множество.

А что же погода? Работа Лоренца привела к усовершенствованию систем, используемых для составления ее прогнозов:

  • на метеостанциях стали собирать значительно больше данных;
  • для вычислений в симуляциях моделей начали использоваться методы, позволяющие добиться большей точности;
  • метеорологи, проводящие эксперименты, осознали важность чувствительности системы к начальным условиям — они запускают большое количество симуляций, входные данные для которых обладают едва заметной разницей, и таким образом явление, происходящее в большинстве случаев, «признается» наиболее вероятным.

Теоретически прогнозировать погоду по дням в деталях можно на две недели, а практически, на современном уровне развития науки, — на 5-7 дней. Я могу, конечно, повторить любимые мантры метеорологов: атмосфера — это хаотическая система с хорошо выраженной диссипацией и тому подобное. На самом деле прогноз погоды…

— это решение системы дифференциальных уравнений. Точность результата, то есть точность решения этих уравнений, зависит от начальных данных.

Так вот, согласно современному пониманию фундаментальных законов природы, теоретическая минимальная ошибка начальных данных ведет к тому, что через две недели решение задачи перестает зависеть от этих самых начальных данных. Другими словами, как бы мы ни старалась, спрогнозировать ситуацию более чем на две недели вперед уже невозможно.

Увы! И это такая непростая философская ситуация, которую впервые осознали именно метеорологи: сколько ни развивай науку, две недели — это порог, и за этим порогом невозможно по дням прогнозировать.

Из интервью Романа Вильфанда, научного руководителя Гидрометцентра России

Несмотря на кажущуюся простоту одноименной системы, Лоренцу удалось изменить взгляды многих математиков и физиков на привычные им вещи и стать основоположником новой ветви теории хаоса.

Лев Хорошанский

Источник: https://nplus1.ru/material/2019/09/06/chaosreigns

«Теория хаоса» – одна из самых чудесных областей современной математики

Применения теории хаоса

В обычной жизни под словом «хаос» люди понимают некий беспорядок. Но математика имеет несколько иное понятие этого слова, причем его чаще именуют детерминированным хаосом. Стремясь не лезть в сложные математические структуры, наименования и прочие формулы, автор статьи попытается объяснить теорию хаоса доступным языком.

Источник изображения: streetartnews.net

Итак, в математике и физике под хаосом понимают сложную систему, в которой незначительные изменения начальных условий приводит к весьма значительному отклонению результата.

Над теорией описывающей закономерности развития внешне хаотических систем (например, полета большой стаи ворон или поведения толпы) работали многие математики. Все же честь именоваться первым настоящим теоретиком хаоса досталась метеорологу Эдварду Лоренцу…

Эдвард Нортон Лоренц, американский математик, один оз основоположников теории хаоса.

Почему метеорологи часто ошибаются

То, что на 3 метеорологов имеется сразу 7 достоверных прогнозов погоды, причем среди них нет истинного, известно многим. А Лоренцу удалось это доказать. В 1960 году Эдвард занимался привычной для синоптика работой — он пытался предсказать погоду.

В распоряжении специалиста имелась электронно-вычислительная машина, в которую он загрузил 12 дифференциальных уравнений описывающие движения атмосферных потоков.

Неожиданно выяснилось, что небольшое упрощение начальных условий серьезно изменяет итоговый прогноз.

В 1961 году Лоренц решил проверить особенную числовую последовательности, но желая сэкономить время, мужчина ввел данные примерно со средины предыдущих расчетов именно этой последовательности. Загрузив данные, мужчина отправился по своим делам. Вернувшись через час Эдвард с удивлением обнаружил, что машина выдала совершенно иной итог.

Взмах крыльев бабочки

Озадаченный метеоролог взялся за поиски причин расхождения результатов. Спустя некоторое время причина сильно изменившегося результата была обнаружена, что вызвало немалое удивления синоптика.

В предыдущей компьютерной распечатке, с которой Эдвард Лоренц вводил данные, значилось число 0,506127, а сам специалист ради экономии времени ввел 0,506.

Разница составляла ничтожные 0,000127, но именно эта разница до неузнаваемости исказила конечный результат.

Сам подобный результат известен как «Эффект бабочки». Различие в точках начальных кривых неуловимо мало (так что его можно сравнить с колебанием воздуха возникающего при движении крыльев бабочки при ее порхании), но в итоге значения кривых очень сильно расходятся.

«Эффект бабочки» Источник изображения: itp.dlut.edu.cn

Этот результат впоследствии описывал Ян Стюарт в своей книге «Математика Хаоса». По его словам, порхание крыльев бабочки вызывает неуловимые колебания воздуха, распространяющиеся во все стороны.

Эти колебания вызывают вторичные колебания в новом месте и так далее. Процесс нарастания колебаний происходит лавинообразно. Итогом может стать появление урагана ударившего по Индонезии.

А может так случиться, что именно 1 взмах крыльев бабочки погасит зарождающееся торнадо и сотни жизней будут спасены.

эффект бабочки проиллюстрирован с использованием источника света, прикрепленного к свободному концу двойного маятника.

Изображение с большой выдержкой показывает сильную зависимость от начальных условий, в которых небольшое изменение в одном состоянии может привести к большим различиям в более позднем системы, то есть «незначительные причины могут иметь серьезные последствия». Источник изображения: wikimedia.

org

В математике точка в которой небольшое усилие может резко изменить конечный результат называется точкой бифуркации. На самом деле на графиках функций процессов таких точек обычно немного. Так что бабочке придется постараться, чтобы конкретно попасть в точку бифуркации и вызвать ураган. И все же подобное явление вполне осуществимо.

Сам Лоренц взял описанные выше 12 уравнений и начал математическими методами их упрощать, иногда делая округления (люди детально изучавшие дифференциальные уравнения поймут автора статьи, остальных прошу поверить мне на слово).

По итогам упрощений осталось только 3 уравнения. Самое интересное, что оттолкнувшись от метеорологических явлений, Лоуренц создал в итоге систему из 3 дифференциальных уравнений, описывающих … водоворот.

Вот к какому неожиданному итогу привели внешне незначительные округления.

Вихрь, создаваемый крылом самолета. Исследования критической точки, за которой система создает турбулентность, были важны для теории хаоса, которую проанализировал, советский физик Лев Ландау и разработал теорию турбулентности Ландау-Хопфа . Источник изображения: wikimedia.

org

Дальнейшие исследования привели к созданию системы уравнений, способных предсказать результат внешне хаотических явлений. Так успешно были просчитаны колебания цен на хлопок в США в 1900 году.

Сравнение результата выданного ЭВМ (не цен, а именно их колебаний по месяцам) с реальной картиной рынка выдало практически полную их идентичность.

Хаотическая закономерность кажется далекой от жизни. В самом деле, никому в здравом уме (разве что кроме математиков) не придет в голову строить систему дифференциальных уравнений, описывающих полет стаи ворон.

Но она гораздо ближе, чем это можно себе представить. Именно так падают капли и бьется ваше сердце. При постоянных условиях оно бьется неравномерно.

Но если построить график зависимости количества ударов сердца от времени, то цикличность хаотичности станет очевидной.

Если вам понравилась статья,топоставьте лайкиподпишитесь на каналНаучпоп. Наука для всех.Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: https://zen.yandex.ru/media/id/5af18cff8c8be36795a8504e/5d9060e3c05c7100b1f8a41d

Хаоса теория

Применения теории хаоса
статьи

  • Основные принципы.
  • История вопроса.
  • Примеры приложений.

Хаоса теория, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем.

Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим.

Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система. Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.

https://www.youtube.com/watch?v=y9u7na9S80o

Пример хаотического поведения из повседневной жизни – движение жидкости в миксере.

Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями.

Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.

Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.

Основные принципы

Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию.

Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,…, образующие очевидную закономерную последовательность.

Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,…, которая циклически и неограниченно скачет между числами 0 и -1.

Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,…, в которой не удается заметить никакой очевидной закономерности.

Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая.

Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется.

Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.

Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.

Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо.

Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным.

Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.

История вопроса

Понятие хаоса не было в явном виде сформулировано до 1960-х годов, но его истоки можно проследить начиная с последнего десятилетия 19 в., когда появилась удостоенная премии работа французского математика А.Пуанкаре о движении в Солнечной системе.

Двумя столетиями раньше Ньютон установил закон всемирного тяготения, из которого вывел, что движение двух притягивающихся тел в отсутствие других сил описывается просто: каждое из них перемещается относительно их общего центра масс по одному из конических сечений – окружности, эллипсу, параболе, гиперболе или прямой.

Для трех или большего числа тел, однако, нельзя найти подобного простого решения, и Пуанкаре показал, что эта трудность вызвана не недостатком человеческой изобретательности, а свойствами, внутренне присущими динамике многих тел.

Он установил, что даже в ограниченной задаче трех тел, масса одного из которых пренебрежимо мала, возможно столь сложное движение, что его нельзя описать никакой математической формулой. См. также НЕБЕСНАЯ МЕХАНИКА.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными.

Его работа получила серьезное математическое обоснование в годы Второй мировой войны, когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем.

Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла».

Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.

Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.

Исследования хаотических систем время от времени появлялись и в литературе по прикладным вопросам. Наиболее известная из таких моделей была введена метеорологом Э.Лоренцем в 1963. Лоренц построил модель конвекции в атмосфере, создав приближения очень сложных уравнений, описывающих это явление, значительно более простыми уравнениями с тремя неизвестными.

Численно решая их на компьютере, он обнаружил, что решения колеблются нерегулярным, почти случайным образом. Лоренц также установил, что если слегка изменять начальные значения переменных, то отклонения будут усиливаться, пока новое решение не окажется совершенно непохожим на исходное.

Описание им этого явления в последующих лекциях привело к популярному ныне выражению «эффект бабочки»: взмах крыла бабочки может изменить погоду.

Примеры приложений

Теория хаоса находит приложения в широком спектре наук. Одним из самых ранних стало ее применение к анализу турбулентности в жидкости. Движение жидкости бывает либо ламинарным (гладким и регулярным), либо турбулентным (сложным и нерегулярным). До появления теории хаоса существовали две конкурирующие теории турбулентности.

Первая из них представляла турбулентность как накопление все новых и новых периодических движений; вторая объясняла неприменимость стандартной физической модели невозможностью описания жидкости как сплошной среды в молекулярных масштабах. В 1970 математики Д.Рюэль и Ф.Такенс предложили третью версию: турбулентность – это хаос в жидкости.

Их предположение поначалу считалось весьма спорным, но с тех пор оно было подтверждено для нескольких случаев, в частности, для ранних стадий развития турбулентности в течении между двумя вращающимися цилиндрами. Развитая турбулентность по-прежнему остается загадочным явлением, но хаоса вряд ли удается избежать в любом возможном ее объяснении. См.

также ГИДРОАЭРОМЕХАНИКА.

Ранняя работа Э.Лоренца в области метеорологии получила дальнейшее развитие, и теперь известно, что полные уравнения поведения атмосферы, используемые при прогнозировании погоды, могут вести себя хаотически.

Это означает, что долгосрочные прогнозы погоды на основе данных о ее прошлом состоянии подвержены «эффекту бабочки», так что погода обычно не может быть предсказана более чем на четыре или пять дней вперед – независимо от мощности используемых компьютеров.

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами.

Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном.

Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером, т.е.

период обращения каждого астероида составляет некую простую дробь с периодом обращения Юпитера. Например, в резонансе 2:3 период обращения астероида равен 2/3 периода обращения Юпитера. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки).

В частности, астероиды в резонансе 1:3 с Юпитером имеют неустойчивые орбиты и могут испытать возмущения, заставляющие их пересечь орбиту Марса, после чего они могут испытать дальнейшие возмущения и пересечь орбиту Земли. В 1995 Ж.Ласкар установил, что на временных масштабах десятков миллионов лет вся Солнечная система хаотична.

Однако хаос не делает все черты движения в Солнечной системе непредсказуемыми. Например, форма планетной орбиты может быть предсказуемой, однако точное положение планеты на орбите остается непредсказуемым. Ласкар предсказал вероятное будущее Солнечной системы в целом на следующие несколько миллиардов лет.

Согласно его вычислениям, ничего существенного не случится с орбитами внешних планет – Юпитера, Сатурна, Урана, Нептуна и Плутона. Орбиты Земли и Венеры тоже не претерпели бы существенных изменений, если бы не Марс, орбита которого изменится настолько, что он едва не столкнется с Землей. Меркурий тоже приблизится к Венере и будет либо выброшен из Солнечной системы, либо поменяется местами с Венерой.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания.

Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е.

флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования.

В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует.

Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.

Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера.

Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива.

Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/matematika/HAOSA_TEORIYA.html

Chaos Theory (Теория хаоса) (Lorenz Poincaré)

Применения теории хаоса

Изучение комплексных и динамических систем для выявления закономерностей порядка (нехаоса) из очевидных хаотичных явлений. Объяснение Chaos Theory (Теория хаоса) Lorenz ('60) и Poincaré. (ca 1900)

Что такое Chaos Theory (Теория хаоса) ? Описание

Методом Chaos Theory (Теория хаоса) от Lorenz и Poincaré будет методика можно использовать для систем изучать сложных и динамических для того чтобы показать закономерности порядка (нехаоса) из по-видимому хаотичных поведений.

«Chaos Theory (Теория хаоса) – Качественное изучение неустойчивого апериодического поведения в детерминистических нелинейных динамичных системах» (Kellert, 1993, P. 2).

Апериодическое поведение наблюдается, когда нет ни одной переменной, описывающей состояние системы, которое испытывает регулярное повторение значений.

Неустойчивое апериодическое поведение очень сложно: оно никогда не повторяется и проявляет эффект любого небольшого возмущения.

Согласно сегодняшней математической теории хаотичная система характеризуется «чувствительностью к начальным условиям». Другими словами, для того чтобы предсказать будущее состояние системы с определенностью, вам необходимо знать начальные условия с огромной точностью, в виду того что ошибки увеличиваются быстро из-за даже самой небольшой неточности.

Поэтому погоду настолько трудно прогнозировать. Теория также применялась к экономическим циклам, динамике животных популяций, в движении текучей среды, области планетарных орбит, электрического тока в полупроводниках, медицинских состояний (например, эпилептический припадок) и моделировании гонки вооружений.

Во 1960-х Edward Lorenz, метеоролог из MIT, работал над проектом по имитации закономерностей погоды на компьютере. Он случайно столкнулся с Эффектом бабочки (butterfly effect) после того, как отклонения в вычислениях на тысячные доли в значительной степени меняли процесс имитации.

Эффект бабочки показывает, как изменения небольшого маштаба могут оказывать влияние на вещи большого масштаба. Это классический пример хаоса, где небольшие изменения могут повлечь большие изменения.

Бабочка, хлопая своими крыльями в Гон Конге, может изменить закономерности торнадо в Техасе.

Chaos Theory (Теория хаоса) рассматривает организации/бизнес группы как сложные, динамические, нелинейные, созидательные и далекие от состояния равновесия системы. Их будущие результаты нельзя предсказать на основе прошлых и текущих событий и действий. В состоянии хаоса, организации одновременно ведут себя непредсказуемо (хаотично) и систематично (упорядоченно).

Происхождение Теории хаоса. История

Ilya Prigogine, лауреат Нобелевской премии, показал, что сложные структуры могут происходить от более простых. Это как порядок исходящий из хаоса. Henry Adams ранее описал данное явление цитатой «Chaos often breeds life, when order breeds habit». Однако Henri Poincaré был настоящим «отцом-основателем теории хаоса» .

Планета Нептун была открыта в 1846 и была предсказана на основе наблюдений отклонений в орбите Урана. Король Норвегии Oscar II был готов дать награду любому, кто бы смог доказать или опровергнуть то, что солнечная система устойчива.

Poincaré предложил свое решение, но когда его друг нашел ошибку в его вычислениях, награду отобрали до тех пор, пока он не смог придумать новое решение. Poincaré пришел к выводу, что решения не было. Даже законы Isaac Newton не помогали в решении этой огромной проблемы. Poincaré пытался найти порядок в системе, где его не было. Теория хаоса была сформулирована в 1960-х.

Значительная и более практическая работа была проделана Edward Lorenz в 1960-х. Название хаос было придуманно Jim Yorke, ученым в области прикладной математики в университете Maryland (Ruelle, 1991).

Вычисление Chaos Theory (Теория хаоса)? Формула

В применении Теории хаоса, одиночная переменная x (n) = x (t0 + nt) с начальным временем, t0, и временем задержки, t, обеспечивает n-мерное пространство, или фазовое пространство, которое представляет собой все многомерное пространство состояния системы; может потребоваться до 4 измерений для того, чтобы представить фазовое пространство хаотичной системы. Таким образом, в течение длительного периода времени, анализируемая система выработает закономерности в рамках нелинейного временного ряда, что можно использовать для предсказания будущих состояний (Solomatine et al, 2001).

Применение Теории хаоса. Формы применения

Принципы Теории хаоса были успешно использованы для описания и объяснения разнообразных естественных и искусственных явлений. Such as:

    Предсказание эпилептических припадков. Предсказание финансовых рынков. Моделирование систем производства. Прогнозы погоды. Создание фракталов. Сгенерированные компьютером изображения с использованием принципов Chaos Theory (Теория хаоса) . (См. на этой странице.)

В условиях, когда Бизнес работает в неустойчивой, сложной и непредсказуемой среде, принципы Теории хаоса могут быть весьма ценны. Области применения могут включать:

Стадии в Теории хаоса. Процесс

Для того, чтобы контролировать хаос, необходимо контролировать систему или процесс хаоса. Для контролирования системы, необходимы:

Цель, задача, которые система должна достигнуть и выполнить. Для системы с предсказуемым поведением (детерминистическим) это может быть определенное состояние системы.

Система способная достигать цель или выполнять поставленные задачи. Некоторое способы оказания влияния на поведение системы.

Включают Параметры контроля/control inputs (решения, правила принятия решений или начальные состояния).

Преимущества Теории хаоса. Преимущества

Теория хаоса имеет широкое применение в современном науке и технике. Коммуникация и менеджмент могут стать свидетелями смещения парадигмы, как и некоторые другие области бизнеса. Исследования и изучение этой области в академической среде могут быть весьма полезны для бизнеса и финансового мира.

Ограничения Теории хаоса. Недостатки

Ограничения применения Теории хаоса связаны, главным образом, с выбором вводных параметров. Методы, выбранные для вычисления этих параметров зависят от динамики, лежащей в основе данных и вида анализа, которая в большинстве случаев очень сложна и не всегда точна.

Непросто найти непосредственное и прямое применение теории хаоса в деловой среде, однако определенно стоит применять анализ деловой среды с использованием знаний о хаосе.

Предположения Теории хаоса). Условия

    Небольшие действия приводят к достаточно большим последствиям, создавая хаотичную атмосферу.

Источник: https://hr-portal.ru/varticle/chaos-theory-teoriya-haosa-lorenz-poincare

Теория хаоса – Психологос

Применения теории хаоса

​​​​​​​

Что такое теория хаоса?

Теория хаоса это учение о постоянно изменяющихся сложных системах, основанное на математических концепциях, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему (реку́рсия — процесс повторения элементов самоподобным образом).

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как “Парк юрского периода”, и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.

​​​​​​​Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса — это теория о беспорядке.

Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок — и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы.

В общем, задача моделирования общего поведения системы вполне выполнима, даже проста.

Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы — наследственной непредсказуемости системы — а на унаследованном ей порядке — общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Теория хаоса о беспорядке

Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона.

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному.

Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы — в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Применение теории хаоса в реальном мире

Фрактальный папоротник, созданный благодаря игре хаоса. Природные формы (папоротники, облака, горы и т. д.) могут быть воссозданы через систему повторяющихся функций.

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное — теория хаоса — это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание.

Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона.

Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому.

Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые — вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени — представляют общее поведение системы.

Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные — т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter.

Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1.

Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п.

Фракталы используются при моделировании пористых материалов, например, в нефтехимии.

В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

Источник: https://www.psychologos.ru/articles/view/teoriya-haosa

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.